Data Cleaning with Python
Data can be messy. Researchers commonly lament the amount of time spent preparing data before any analysis can take place. Potential steps for preparing or “cleaning” data include changing data types, adjusting values for consistency and validation, splitting or joining values, and removing extraneous records, to name a few. This workshop will cover some common data cleaning steps using Python. Basic knowledge of Python syntax recommended. This is an in-person workshop.
Free and open to all, registration required.